Design of a non-invasive Hip Exoskeleton

Lahdan Alfihan Meshal Alghammas Abdullah Almarri Mohammed Janshah

Introduction

• Project description and

background.

- Target are children from
 - 6 to 14 years old.

Figure 1: Design Prototype.

Abdullah Almarri 11/04/2019 Hip exoskeleton

Project Description

- The purpose of this project
- The goal of the project
- Who can use it.
- It comprises of three subsystems.
- Sponsor.
- Client.

Abdullah Almarri 11/04/2019 Hip exoskeleton

Project Description

- Subsystems Functions:
 - Pelvic subsystem
 - Hold the device.
 - Thigh subsystem
 - Hold actuators and attached to the thigh.
 - Actuators subsystem
 - Support movement.

Abdullah Almarri 11/04/2019 Hip exoskeleton

Figure 2: isometric view of CAD design

Figure 3: Side view of CAD design

Lahdan Alfihan 11/04/2019 Hip exoskeleton

Design Description

- Design of the pelvic:
- Fabric lining.
- Strap.
- Design of the thigh:
- Fabric lining.
- Strap.
- Motor actuators.
- Hip actuators.
- Less energy to initiate movement.

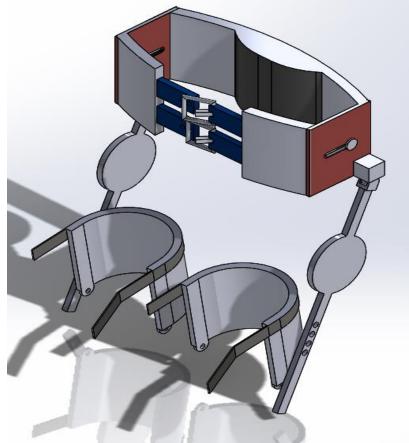


Figure 2: isometric view of CAD design

Lahdan Alfihan 11/04/2019 Hip exoskeleton

Design Requirements

Customer Needs:

How the Device Meets The Customer Needs:

- 1. Lightweight Design
- 2. durability
- 3. Flexible for all sizes.
- 4. Comfort
- 5. Simple system

- 1. Lightweight material.
- 2. Durable and strong materials.
- 3. Adjustment.
- 4. No contact between the metal bars and the body.
- 5. Uses actuators on the hips to facilitate functionality. Meshal Alghammas 11/04/2019 Hip exoskeleton

Design Requirements

- 1. Torque : 30% of actual human hip torque.
- 2. The hip and thigh braces.
- 3. The thigh frame.
- 4. Materials
- 5. Cost.

Meshal Alghammas 11/04/2019 Hip exoskeleton

Design Requirements

Customers needs:

CN.	Weight
Light weight	7
Low mobility	3
Adjustable size	9
Comfortability	8
Reliability	9
Durability	9
Ease of wearing	4
Range of motion	9

Engineering Requirements:

ER.	RTI (%)
Weight	14
Flexibility	16
Ease to put on/off	8
Yield strength	13
Cost	15
Non-invisible	12
Young modulus	11
Torque	11

(See Appendix A: HoQ)

Meshal Alghammas 11/04/2019 Hip exoskeleton

Design Validation

Critical Potential Failures:

- Dust or particles in the motor housing.
- Presence of cracks on support frames.
- Lose hip and thigh braces.
- Failure of the sensors.

Mohammed Janshah 11/04/2019 Hip exoskeleton

Design Validation

How the design mitigated the potential failures.

- Examination of the motor housing.
- Physical examination of the frames to identify any cracks.
- Precise measurements of the length and diameters of the braces.
- Calibration of the sensors.

Mohammed Janshah 11/04/2019 Hip exoskeleton

Testing Procedures

Weight limit:

- 50 lbs to 120 lbs.
- Test the device on different weights.
- Analyze the results.

Adjustability:

• Test the device on children of different sizes.

(See Appendix B: Design Validation)

Mohammed Janshah 11/04/2019 Hip exoskeleton

Budget

Project budget: \$2250

Prototype: \$350

Materials: \$710 (See Appendix C: Bill of Materials.)

Carbon fiber (\sim \$300)

- Two thigh frame Motors (~\$360)
- Two small motors

Arrestors (~\$30)

- Three arrestors

Sensors (~20)

- Two sensors.

Contingency budget: \$400

Meshal Alghammas 11/04/2019 Hip exoskeleton

Improvement needed

• Passive movement.

• Connection point between hip and thigh subsystems.

Figure 4: Design Prototype.

Lahdan Alfihan 11/04/2019 Hip exoskeleton

Gantt Chart

								Sept	ember	2019							Octob	er 2019								Nover	nber 201	9						Dece	mber 201
	Task Name	Start 👻	Finish 👻	Task Owner	22	25	28	31	3 (6 9	12	15	18	21	24	27 3	0 3	6	9	12	15	18	21 2	4 27	30	2	5	8 1	1 1	4 17	20	23	26 2	9 2	5
1	Project signup	Mon 8/26/19	Wed 8/28/19	Dr, Sarah		6																													
2	Team charter	Wed 9/4/19	Thu 9/5/19	Mohammed				4																											
3	Solid work	Wed 9/4/19	Fri 9/6/19	Individual				4																											
4	Presentation 1: CNs/Ers and Background	Sun 9/8/19	Mon 9/16/19	Meshal						6																									
5	Self-Learning	Tue 10/1/19	Fri 10/4/19	Individual	1											4	1	Y																	
6	Presentation 2: Concept Gen and Eval	Wed 9/25/19	Mon 10/7/19	Abdullah											4			•																	
7	Preliminary Report	Tue 10/8/19	Fri 10/18/19	Lahdan														6	1																
8	Analyses Team Memo	Tue 10/29/19	Fri 11/1/19	Meshal																				1											
9	Website Check 1	Fri 10/25/19	Fri 11/1/19	Mohammed																			1												
10	Presentation 3: Final presentation	Mon 10/28/19	Fri 11/1/19	Abdullah	1																			4											
11	Final Report	Tue 11/5/19	Fri 11/15/19	Mohammed																										۵.					
12	Final BOM/CAD Package	Mon 10/28/19	Sun 11/3/19	Lahdan	1																			6		-									
13	Analytical Report	Sun 11/17/19	Wed 11/27/1	Abdullah	1																									6					
14	Prototype demo	Fri 11/29/19	Fri 12/6/19	Lahdan	1																												6		
15	Website Check 2	Fri 10/25/19	Mon 12/9/19	Mohammed	1																		1												

11/04/2019 Hip exoskeleton

Any Question?

References:

[1] Disabled World, "Average Height to Weight Chart - Babies to Teenagers," *Disabled World*, 22-Aug-2019.
[Online]. Available: https://www.disabled-world.com/calculators-charts/height-teens.php. [Accessed: 01-Nov-2019].

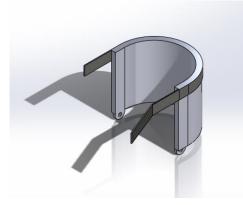
[2] Agarwal, Priyanshu and Deshpande, Ashish. Exoskeletons: State-of-the-Art, Design Challenges, and Future Directions. 2019; p.234-259.

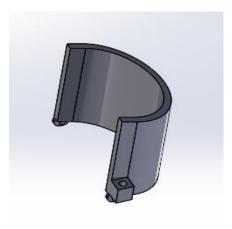
[3] Gorgey, Ashraf S. "Robotic exoskeletons: The current pros and cons." *World journal of orthopedics* 9.9 (2018): 112.

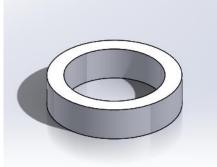
Appendix A: HoQ

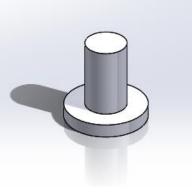
		Hous	e of C	Quality (H	oQ)	-				
Customer Requirement	Weight	Engineering Requirement	Weight	Flexibility	Ease of putting ON/OFF	Yield Strength	Cost	Non-invisible	Young Modulus	Torque
Light weight	7		9	5	9	9	5	8	5	9
Low Mobility	3		2	9	3	3	3	9	7	3
Adjustable size	9		5	3	1	3	6	6	1	1
Comfortable	8		7	4	1	7	8	3	5	2
Reliability	9		1	8	2	9	9	2	3	5
Durabiilty	9		3	3	1	1	1	5	9	8
Ease of Wearing	4		7	8	7	1	3	1	2	3
Range of Motions	9		6	9	3	2	1	3	1	1
Absolute Technical Importance (ATI)			288	333	171	267	273	255	230	235
Relative Technical Importance (RTI)			14%	16%	8%	13%	13%	12%	11%	11%
Target ER values			80N	18in	40 s	210Gpa	\$2,500	-	215Gpa	7N.m

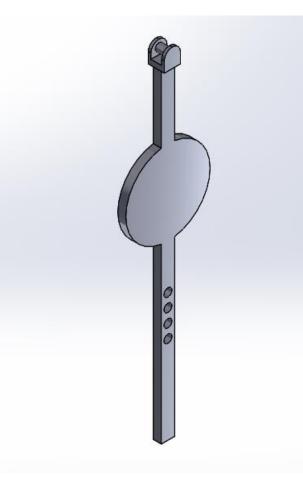
Appendix B: Design Validation

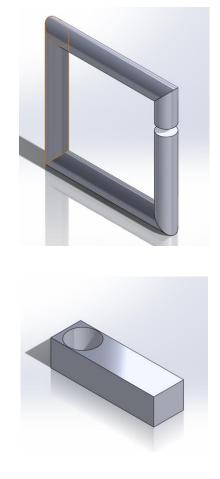

Part	Potential Failure Modes	Potential Effect(s) of Failure	Severity of the <i>Effect</i>	Potential Causes	Possibility of Occurrence	Current Design Controls	Ability to Detect a <i>Failure</i>	Risk-priority number (Severity * occurrence * detection)	Improvement Actions
Actuato rs/ Motors	Foreign materials	Flexibility/ and joint actuation.	9	Failure to clean the operations surface.	1	-Clean surface. -Motor casing	1	9	-casing the actuators to prevent dust. -Checking the motors before installation.
Support Frames	Cracked	Breakage/ user can fall	8	Wrong material/	1	-Testing of mechanical properties- Physical examinatio n of the material.	1	8	-Physical examination for cracks.
Braces	loosened	Inadequate support and comfort.	6	Failure to fasten the braces adequately / Excess length	3	-Accurate length measureme nt -tightening of joints.	1	18	-accurate measurement to avoid excesses.
Sensors	Overlooke d	Ineffective signal acquisition (hip movements)	9	Misplace ment of the sensors in the pelvic area.	1	- Calibration	1	9	-calibration of the sensor. -Precision in installation of the sensors for increased efficiency.

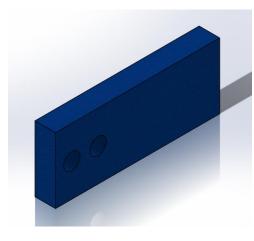

Appendix C: Bill Of Materials

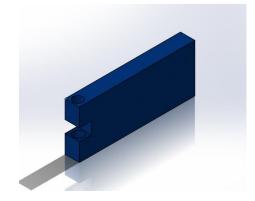

+

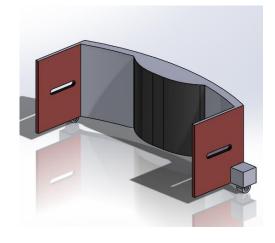

+								
Par	t Part	Qt	Description	Functions	Material	Dimensio	Cost	Link
#	Name	y				ns		
1	Frame	2	Contains holes at different parts for holding other parts	Hips and legs support	Carbon Fiber/ Aluminu m	4 in each	\$150	https://www.alibaba.com/trade/search?f0=y &IndexArea=product_en&CatId=&SearchTe xt=carbon+fiber+tube&refine_attr_value=32 4-352311
2	Arrestor s	3	2-for thighs and 1 for pelvic area support	Support to the thighs and hips	PVC	2 in each	\$10	https://pvc-films.en.made-in- china.com/product/aqtQOTXKfNVy/China- PVC-Film-PVC-Sheet-PVC-Sheeting.html
3	Small Motors	2	Hip and knee joints actuation	Actuators	Carbon casing	19mm	\$180	https://www.maxongroup.com/maxon/view/c ontent/ec-flat-motors
4	Sensors	2	Placed on the pelvic component.	Signal detection on the hips.		5mm	\$10	https://www.maxongroup.com/maxon/view/c ategory/sensor?etcc_cu=onsite&etcc_med_o nsite=Product&etcc_cmp_onsite=Encoders& etcc_plc=Overview-Page- Sensors&etcc_var=%5bcom%5d%23en%23 d ⌖=filter&filterCategory=encoder

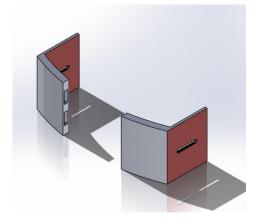

Appendix D: CAD Parts










Appendix E: CAD Parts

